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The field theory for multifractals in percolation is reformulated in such a way that multifractal
exponents clearly appear as eigenvalues of a second renormalization group. The first renormalization
group describes geometrical properties of percolation clusters, while the second one describes elec-
trical properties, including noise cumulants. In this context, multifractal exponents are associated
with symmetry-breaking fields in replica space. This provides an explanation for their observability.

It is suggested that multifractal exponents are “dominant” instead of “relevan

” since there exists

an arbitrary scale factor which can change their sign from positive to negative without changing the

physics of the problem.

PACS number(s): 64.60.Ak, 05.70.Jk, 72.70.4+m, 05.40.4j

I. INTRODUCTION

The renormalization group and critical phenomena
have provided, over the years, key concepts that allow
us to understand problems ranging from phase transi-
tions to percolation. Even though infinite sets of expo-
nents, such as crossover exponents, were calculated early
after the introduction of the renormalization group in
critical phenomena [1], attention is usually focused on a
few relevant exponents. This focus on a few exponents
is justified since observable quantities in general couple
to many renormalization group eigenoperators, includ-
ing the most relevant ones, which eventually dominate
their behavior. That lore was challenged relatively re-
cently by the appearance of infinite sets of measurable
exponents in various fields. Problems where such infinite
sets occur are collectively known as multifractal problems
[2-4], even though some of these problems have a quite
different physical nature. We discuss here the problem of
electrical properties of percolating networks [5-7].

The difficulties associated with the formulation of a
Lagrangian field theory for multifractals were discussed
by Ludwig and Duplantier [8,9]. In particular, the ex-
ponents x, describing multifractal behavior are a con-
vex function of n, while the analogous exponents of field
powers in a field theory are in general concave as a conse-
quence of stability and correlation inequalities [8]. But,
as stated in Ref. [8], powers of composite operators, such
as derivatives, can exhibit multifractal behavior. It is
therefore possible to formulate for multifractals a field
theory that is amenable to a renormalization group anal-
ysis. This has been done for percolation by Parks, Har-
ris, and Lubensky [10] (PHL). This field theory, however,
does have some peculiarities that make it different from
usual field theories. In the present paper, we reinterpret
the field theory of PHL so as to make special features
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clearer. In fact, there are also some differences in the
way we set up and interpret the field theory. A detailed
discussion of the differences and of the reasons that mo-
tivate our approach have appeared [11]. The structure
that will emerge here is that geometrical properties of
percolation clusters are described by a standard field the-
ory on which one can perform a renormalization group
analysis. We call this the first renormalization group.
By contrast, multifractal properties, originating from the
electrical properties of the cluster, are described by a sec-
ond renormalization group [12,13]. The structure of this
second renormalization group depends on the first renor-
malization group: Once the usual recursion relations for
percolation are derived, the recursion relation for each
multifractal moment must be found by a further pro-
jection onto an appropriate eigenbasis. In the second
renormalization group, the role of the fields is played by
the microscopic noise cumulants v,. These fields v, are
conjugate to replica-space gradients of the operators @,
for example, k?*®y (q)®_x(—q), where q is defined in the
usual Brillouin zone while k is the replica-space extension
of the Fourier variable for the voltage. Without changing
the physics, the scale of k can be changed by an arbitrary
factor. The existence of this arbitrary scale factor is a
direct consequence of the linearity of Kirchhoff’s laws.
This has no equivalent in usual critical phenomena. Due
to this arbitrary scale, the multifractal exponents can
change sign, rendering inappropriate the usual classifica-
tion as relevant or irrelevant. We suggest, therefore, call-
ing the multifractal exponents dominant exponents since
they determine the leading scaling behavior of observable
quantities while corrections would come from subdomi-
nant exponents. The fields for multifractal moments are
associated with operators that break rotational (permu-
tation [8]) symmetry in replica space. This seems to be
the reason why the multifractal moments are each asso-
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ciated with a different dominant exponent and not just
to a few exponents.

In the following section, we provide a short review of
the phenomenology of multifractals in percolation. Then,
in Sec. III, we derive the field theory and, in Sec. IV,
proceed with the renormalization groups. The discussion
in Sec. V clarifies some points of interpretation.

II. PHENOMENOLOGY OF MULTIFRACTALS
IN PERCOLATION

For completeness, let us recall how the infinite set of
exponents appears in percolation through the problem of
noise. Suppose that the conducting resistors of a per-
colating network are fluctuating independently in time.
The total resistance of a given network is then a random
variable in time whose cumulants depend on those of each
component resistor. The cumulants of a given order are
assumed to be the same for all component resistors. The
cumulants of the total resistance R are, in principle, ac-
cessible experimentally and measurements of the second
cumulant, corresponding to 1/ f noise, have actually been
performed [14]. Theoretically, for systems of finite size
L at bulk criticality, one finds, after averaging over the
microscopic noise, that the cumulants 01(2") (L) of order
n scale as

(€ (L)) = <Z> ~ L%, (1)

(e

where C represents average over percolating lattice con-
figurations, ¢, is the current that flows in branch « of
the time averaged network, and v, is the amplitude of
the nth cumulant of the elementary resistance fluctua-
tions. For example, the usual electrical noise amplitude
for one microscopic resistance r is obtained from

vy = {érdr},, (2)

where {}, is an ensemble average that is equivalent to
the time average over the noise. The first equality in Eq.
(1) follows from the assumption that different elementary
resistors are uncorrelated and from Cohn’s theorem

SR=brqi2, (3)

where the total input current Ii; is unity. Each expo-
nent z,, in Eq. (1) is different and is not a simple linear
function of n, as commonly occurs in critical phenom-
ena under the name gap scaling [1]. Such an infinite set
of exponents also arises in the other analogous problems
mentioned above. In all these problems, one is assign-
ing to parts of a fractal network a weight, or a measure,
that is obtained from the solution of Laplace’s equation.
Here that weight corresponds to the power dissipated in
a bond.

Finally, let us recall that the positive integer moments
(3" 22")c suffice to characterize completely the distri-
bution of the currents flowing through the network [15].
But, as stated previously, the ezact value of the inte-
ger moments is necessary to reconstruct all the informa-
tion so that the leading scaling behavior of the positive

moments does not suffice to find, for example, negative
moments. In the following, we concentrate only on the
scaling behavior of the positive integer moments. Note
that in order to keep the same notation as PHL [10], we
work with exponents defined by

Vs /v = —z, (s =mn). (4)

III. FIELD THEORY FOR THE GENERATING
FUNCTION

A. Generating function for the cumulants

Since Kirchhoff’s law can be obtained by minimizing
the entropy production, or the dissipated power in the
electrical network, it is natural to start from a generating
function for the resistance between two points y and y’
of the network

AVpax
W (k;9,9/) = / d[V ()]

AViin
xexp{—H +ik [V(y) = V(y)]}, (5)

where AV, and AVpay are, respectively, the minimum
and the maximum voltage drops for a finite size system
and H is given by

=1 ob(z,a’;C, f) [V (z) — V(a"))? (6)

(=)

with oy(z,2'; C, f) the conductivity of the bonds « link-
ing each pair of points « and z’ for a given configura-
tion C of the random resistor network. For each given
configuration of the random network, the conductivities
fluctuate in time. In other words,

U'b(a:,:l:/;c, f) = JO((E,:I:I;C)(l +6)7 (7)

where € <« 1 is a random variable whose probability
distribution is given by f (¢). Hence there are two
types of averages to perform: the usual bond-disorder
average and, for each lattice configuration, an aver-
age over the microscopic noise. To obtain a Hamilto-
nian with the same structure as for a spin system [e.g.,
J(x — 2')S(x)S(x')] one uses Fourier transforms. Since
the potential differences are on a bounded interval, de-
termined by the boundary conditions, it is possible to use
discrete Fourier series. Formally, we may write

H = Z Ub(wax,;cv f)ZAkeik[V(x)_V(zl)]’ (8)
(z,z’) k

where the Fourier coefficients are given by

Ap = /Avm“ d(AV) [AV]E*AV. (g

AViax JAViin

Because the £ = 0 terms correspond to a uniform dis-
tribution of voltage, they will be discarded. In the the-
ory of Stephen [16], the order parameter 1) is defined in
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such a way that its autocorrelation function vanishes in
the nonpercolating phase and decays exponentially in the
percolating phase. This order parameter is

Yi(y) = W, (10)

where the wave vector k takes a discrete number of
values 27mn/(AVpax). The presence of a lattice instead
of a continuum leads to the existence of an ultravio-
let cutoff Aj, corresponding to the minimum voltage [17]
A = 27/(AVmin). That cutoff becomes infinite in the
percolation limit og 1 — 0. For a given realization, we
may then write H in the form mentioned, namely,

H =2Ak Z ov(z,z'; C, f) Yr(z) Yu(z') , (11)

k CRD

where, in the second sum, we consider only the connected
links of the network. To understand what follows it is
important to realize that the k’s scale as AV, L and that
we must use a discrete Fourier expansion since the replica
method is only valid for a finite system. The infinite-
system limit is taken at the very end.

In the limit where o5 ! — 0, the saddle point configu-
ration for the voltage drops obeys Kirchhoff’s laws and,
in this limit, we obtain for the generating function

W(k;y,y’) — (¢k(y) ’l/}—k(yl» -z e—%k”R(y,y';C,f),
(12)

where
Z =/d[V(z)]
xexp(-; > o0 ) [V(m)—V(w')f)

(@,z')

- / d[V ()] exp (— H) (13)

and R(y,y’;C, f) is the resistance between nodes y and
y' for a given configuration C of the random network and
realization f of the noise. As in the work of PHL [10],
the cumulant averages for the resistance noise may be
obtained from the generating function. We first average
Eq. (13) over the probability distribution for the noise f
and then we average over the disorder as follows:

<{exp (—%sz(y,y';C))}f V(y,y’;0)>c, (14)

where the function v plays the role of a conditional prob-
ability that the two points y and 3’ are connected. Ex-
panding the left-hand side in cumulants of the resistance,
Eq. (14) becomes

C

-1)° 8 8 . /.
<exp Z(—z—s)—,kz c¥(y,v50) V(y,y,C)>

8>1

= ({Wr @ vk N}y) - (19)
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The cumulants of the resistance fluctuations
C};)(y, y’; C) may thus be obtained from derivatives of
the generating function since, by Eq. (1) and in the
051 — 0 limit, they are proportional to the microscopic
cumulants [5]

<CI(§) (1,950 v (y,9; C)>C

= (=1)° 2% st k™20,

P [<{<¢k ) %k (y')>}f>c]

x
v,

|'v1:0 vi - (16)

Thus the macroscopic cumulants of the noisy resistor net-
work can be obtained from the autocorrelation of the or-
der parameter, after averaging over bond disorder. It is
important to note that the quantities v, play the role of
fields whose conjugate operators will contain polynomials
in k , as explained later.

B. Replica method and effective action

Since there are two types of averages over random vari-
ables, we introduce two types of replicas, as suggested by
PHL [10]: N replicas for the average over noise (f) and
M replicas for the average over bond disorder (C):

(<[{ZN}f]M>C _ 1). (17)

NM

<{an}f>C B N,lzlvrnim
As usual, the limiting process is justified only for finite
systems. In other words, the limit L — oo is taken after
the limits N, M — 0.

We do not repeat the details of the derivation of the
field theory [10]. As usual it proceeds by introducing
Hubbard-Stratonovich variables ® conjugate to each v
appearing in ZVM. Expanding in powers of 1 and per-
forming the integrals over the voltages appearing in the
original generating function, one generates a power series
in ® which can be reexponentiated to yield an effective
action for the ®. These variables are now the operators of
the field theory. For Hubbard-Stratonovich transforma-
tions, the generating function (¢ (z)¥_x(x)) is simply
proportional to (®x (x) ®_k (x)); hence all we need is
the effective action for the operators &y

£(®) = %/ddm AkS e [@u(%) @i (x)
k
+V<I>k(x) . V@-k(x)]
+% / diz(Ak)2 S @y, (x)

ki +k27#0
x Py, (x)QI’—lﬁ —k2 (x) (18)

The k in Eq.(18) is any of the k Fourier variables whose
components are labeled ko in the N M-dimensional
replica space and k2 =3 5 kiﬁ is the square modulus

of k. There are (LM% — 1) operators ®i(z) at a spatial
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point z (the k = O case is omitted). The kg are conju-
gate to the electrical potentials of the replicated systems.
They contain a scale factor correponding to the scale of
the electrical potential. In the limit of geometrical perco-
lation (i.e., no transport property), the k,g are all zero.
Note that despite the notation, the k are tensors of rank
one and not two, as far as rotations in replica space are
concerned. As usual, to find critical exponents the k de-
pendence of the coupling constant us can be neglected,
but that of ry is crucial. The scaling of the terms entering
Tk can be inferred from the scaling properties of the gen-
erating function. Writing explicitly the dependence on
the microscopic cumulants v,, one obtains for the scaling
properties of the generating function,

Gk (y - y',P — P, {vs}521 ,Iinj)

= GAk (y - I’/I,P — De {A_ZBUS}SZ]_ ,Iinj) (19)

since k scales as ﬁ. Indeed, the cumulants

CI(;)(y, y'; C) are linearly proportional to the microscopic
cumulants v, so that, as can be seen from Eq.(15), the au-
tocorrelation function for the order parameter does have
the scaling property (19). Expanding for small v,, the
most general form for the ry is then a homogeneous poly-
nomial in k and v,,

T‘kzp—pc-l-Zkza( Z Vs Vsy " " Vs,
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In Eq. (20) the functions P (..., 0k, ...) depend on the an-
gular variables 0, in the (n = M N)-dimensional replica
space. For each s =(sy, s2, ..., 8;), these polynomials can
be expressed as a linear combination of the spherical har-
monics for the M N angular variables 6. Their explicit
expressions depend on the particular distribution f for
the noise of the elementary bond resistor. The expan-
sion in Eq. (20) is justified by the fact that for a finite
system, the effective action is an analytic function of k
and hence, by scaling arguments, of v,. For s = 1, it will
be seen in the Appendix that P; (6) = 1, i.e., k? is the
only polynomial of degree 2 that contributes and it is an
eigenpolynomial of the second renormalization group.

Finally, observable quantities are obtained using the
standard replica-method identity

Gk (y - y,,P — DPey {v3}321 7Iinj)

= (L@@ N}s) , ~ Jlim (B@)Bx)) -

(21)

In the absence of symmetry breaking in replica space, the
modulus of the replicated k in Eq. (21) is equal to k in
expression (15).

C. Scaling properties

s>1 s1+s2+ - +8i=s
X Play,s2,.18:) (s Oea gy o) |+ (20) Near the percolation critical point, the generating
' function scales as
lim G (y - y',p — Pe> {Us}s>1 , Iim) = lim A2—p—d
L—oo; o'o_l,n-—*(] - L—oo ; ao_l,n—)O
XGk( (y - y,) A_l’ (p - Pc) ’\l/ypv {'Us ,\11),/11,7 }8211 Iinj)a (22)

which also implies

lim G (y - y,’p — Pec, {'Us}szl ,Iinj)

L—o00; ao_l,n—ﬂ)

= (p—p) ™ S((y — o) (p— pe)” , {va (p — pe) ¥ bas1 ) (23)

where S is a scaling function. As usual, the correlation
length £ behaves as (p — p.) ™. The L — oo limit must
be taken at the end for the replica method to be valid.
From the way the problem is set up, the n — 0 limit
must be taken before the o5 1 5 0 limit. However, as we
shall see in the following sections, we need to add another
condition to linearize the second renormalization group
equations, namely, that

v, K v Vs > 1.

This inequality is consistent with the phenomenology of
1/ f noise.

IV. RENORMALIZATION GROUP APPROACH

A. First and second renormalization group

The renormalization group equations are obtained [10]
from the usual procedure for a cubic Landau-Ginzburg
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functional. Using the Wilson approach, operators ®i(q)
whose wave vector q is in a shell A/b < ¢ < A, near
the cutoff A coming from the physical lattice, are traced
over. It is always possible to choose the lattice spacing
units such that A = 1. Lengths are then rescaled by b,
while the operators are rescaled as

P (q' = bq) = b(~4"2¥)/2p, (q). (24)

Let K4 be the surface of the d-dimensional sphere. To
one-loop order, in dimension d = 6 — € near the upper-
critical dimension d = 6, the differential recursion rela-
tions for 7 and for the coupling constant g = Kgu?/2
take the form [10,18]

drk

— = (2—mp) rx

- g%k,
dl g2k

d
= = (e=3n,)g —8g%, (25)

where [ is defined by b = e!. In the first equation, ¥y is
the self-energy-correction to one loop [10]

Sk = lim (Ak) ) GlplGlp+K]
p,p+k#0
= —2G [k] G [0] + Zx. (26)

Since we are looking for a linear renormalization group
in v, it suffices to restrict ourselves to the Green’s func-
tions expanded to first order in v,. Furthermore, the
momentum-shell integral is for g2 = A% = 1, so that the
Green'’s functions appearing in (26) are of the form

G[p+k]_ =14+p—p.+ Zv kzsP(l) (cory Oxcy --2) -

8>1
(27)

The usual percolation fixed point v, = 0 and p = p.
describes the geometrical properties of percolation clus-
ters. These properties are completely independent of the
electrical transport properties of the network. In other
words, the field r¢ is the coefficient of a polynomial of or-
der 0 in k so that the calculations of the fixed point and of
the usual geometrical exponents 7, v, are independent of
the values of the fields v,, which are all associated with
higher-order polynomials in k times the field operator
P, P_x. Hence one obtains the same results as in Ref.
[10], namely, g* = €/7 for the fixed-point value of the
coupling constant and 7, = —¢/21 and v, = 3 + g5 for
the exponents. These exponents and fixed-point values
of g and r¢ come from what we call the first renormaliza-
tion group, whose predictions relate to the geometrical
properties of the percolation network and hence are in-
dependent of electrical properties.

Going further to obtain the exponents 1, associated
with v,, one has to linearize Eq. (25) in v;. To the
order we are working, the v, are all multiplied by the
same power Py, namely, 2, but by different powers of k,
namely, a homogeneous polynomial of order 2s. Hence we
consider the renormalization group as a renormalization
equation in the space of homogeneous polynomials in k.
This is what we call the second renormalization group.
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To be more specific, let us start with the simple case
of d larger than the upper critical dimension (d. = 6).
The renormalization group equations for 7 then read

d?"k

— = 2rk. 28

g = 2k (28)
In other words, the recursion relation for the v, is ob-
tained by linearizing around the fixed point v, = 0,
s =0,1,.... To first order in v, one has

Tk =P — Pc+ Z k2%v, P, (,

8>1

Oxe > ---) (29)

and thus the scaling in Eq. (24) leads to

dv,

= 2v,. (30)
Above six dimensions then, any P(k)
= k%P, (...,0k, 5,..-) is an eigenvector of the second

renormalization group. The eigenvalues are all identical,
as is already known. [5] Thus, even though the precise
form of P,(k) depends on the microscopic noise distribu-
tion, the eigenvalue for v, does not. Below six dimen-
sions, things are less trivial since the self-energy i de-
pends functionally on P,(k) . Nevertheless, we will show
that there exists an eigenbasis of polynomials in k whose
eigenvalues are labeled only by the order of the polyno-
mial. This means that whatever the starting P,(k), the
eigenvalue for v, depends only on s.

Below six dimensions, the renormalization group equa-
tions must be obtained by linearizing the self-energy ¥y
as a function of v,, s > 2. We show in the Appendix
that the eigenpolynomial basis is obtained, in the limit
vy << vy, by solving for each integer s the equation

__2/+oodu/+oodt exp{—(u+t)(1+7r0)} [t+u]2su

{ (+t_
X < exp Tor t

which correponds to the limits o5 — 0 and n — 0 for
the self-energy. In Eq. (31) the Lapla(:lan operator A
acts on k and its limit, as n — 0, is discussed in the
next subsection. Because r, in Eq. (25) is linear in v,,
the eigenvalues for the second renormalization group are
obtained as 2 — 1, — g* (2 + d,). In what follows, g will
be taken at its fixed-point value g*.

) P(k)} =d,P(k), (31)

B. Eigenvalues and eigenvectors of the second
renormalization group

Equations (25) and (31) define the renormalization
group equation for homogeneous polynomials of order 2s.
To diagonalize this equation we need eigenfunctions for
the Laplacian operator. In n dimensions, the most gen-
eral form for these eigenfunctions is given by [19]
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k_%J2r+g;72 (’)’k) Y-, (...,0k, ) y (32)

where Y3,(...,0;,...) is a spherical harmonic of order 2r
in n = NM dimensions and J, is the Bessel function of
order r with eigenvalue —y2. To expand polynomials of
order 2s on this basis, we first recall that the maximum
value of the replica space k = vk? is given by the ultra-
violet cutoff Ay = kmax = 27/ AVinin = 0027 /imin. We
can then proceed as follows. First note that an arbitrary
polynomial of order 2s can be written as

Pybag) =K* 3 aypYar (o0r),  (33)

0<r<s

where, to simplify the notation, we do not write internal
indices related to the degeneracy of the spherical har-
monics. Then, we write

K*Ys, (..., 0k, ...) = (st - kZTAi('*“”) Yar (cony O, -..)
+KZTAZCTY, (6, ). (34)

The last term is an eigenfunction of the Laplacian with
eigenvalue zero, while the first term can be expanded us-
ing the Fourier-Bessel expansion [20], which is uniformly
valid for functions with zero value at the end of the in-
terval

(k2 = k2 AFC77) Yar (s O, )

n-2 k
= Z blk_TJ2T+g%3 <A_kCl) Yz,. (...,0k, ) s (35)

1>1

where {(;},-., are the zeros of the Bessel function of order
2r + (n —2)/2.

We can now substitute this expansion in the kernel of
the integral appearing in the recursion relation Eq. (31).
The contribution of a general term of the series will have

the form
_u + tt—z i ?
2’1]1 Ak
n—2

2 k
xk 2 J2r+nT~2 (1—\:@) Y., (.‘.,9]‘, ) . (36)

The n = NM — 0 limit is obvious. Taking the o' — 0
limit simplifies further the equation considerably since,
in the argument of the exponential, [leﬁ] s propor-
tional to o4 1. This means that effectively every term of
the series behaves as if it had the same eigenvalue for the
Laplacian, namely, 0. Since k/Aj is bounded between 0
and 1, the series can be resummed and any polynomial
of order 2s is an eigenvector with eigenvalue [10]

B. FOURCADE AND A.-M. S. TREMBLAY 51

+o00 +o00 t 2s
d, = — d d - t
2/0 u/o t exp [— (v + H[t—l»u] u

2
ERNCTES VI Py (7

The main conclusion of the section is that the space of
homogeneous functions of order 2s can be characterized
by a single eigenvalue that depends only on the order of
the polynomial. The form of the microscopic distribution
of the noise is therefore not relevant for scaling proper-
ties of the macroscopic resistance fluctuations. Only the
condition v, << w; Vs > 1, which was used to derive
Eq. (31), needs to be satisfied. The critical exponents
associated with the fields v, are thus

€

Ve=vpl2=mp—g" QA =1+ rr ey

s=1,2,..., (38)

as found by Parks, Harris, and Lubensky (v, = % + %e
and 7, = —57) [10]. It is shown in the Appendix that
this formula applies also for the case s = 1, as written
above.

V. DISCUSSION
A. Gap scaling

The scaling of the usual thermodynamic observables is
normally trivially obtained from a few exponents only.
This is usually referred to as gap scaling. Gap scaling
also occurs in the present case. For example,

&' Gy (z,z') 1 v
a—vﬁ _0~|:1:—m‘ P. (39)

That this applies to multifractals in percolation was ver-
ified by numerical simulations in [21]. Clearly, one can
also define universal amplitude ratios [15,21].

B. Symmetry breaking

With v; = 0 for all s, the action is invariant under the
global transformation

<I>{( = PRy, (40)

where R is a rotation (permutation) of the vector k in
the replica space of dimension M N. In other words, the
action transforms according to the unit representation
of the group O(MN). When v, # 0, that symmetry is
broken since polynomials of higher degree transform like
higher-dimensional representations of the group O(M N)
[22]. To have every v, associated with a different repre-
sentation of the symmetry group is a necessary but not
sufficient condition to have an infinity of observable ex-
ponents. Indeed, operators of different symmetry could
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couple when higher-order corrections to the € expansion
are evaluated. All this is analogous to what happens
with symmetry-breaking fields in other critical phenom-
ena models, such as the XY model for example [23]. The
exponents 1, here are analogous to the crossover expo-
nents @, of the XY model [24].

C. Dominant exponents

At first sight, the perturbations associated with the v,
are all relevant since all the exponents 9, are found to
be larger than zero. There are two important differences,
however, with critical phenomena (say the case of the XY
model).

(a) There is no physical realization that we know of
for the lower-symmetry fixed point towards which the
system rescales when one of the symmetry-breaking per-
turbations is different from zero. All physical observables
are derivatives evaluated at a zero value of the symmetry-
breaking fields v,: In other words, the exponents 1, are
crossover exponents associated with the symmetric fixed
point.

(b) There is an additional freedom to rescale k at each
iteration as seen in Eq. (19). This allows one to formu-
late the renormalization group in such a way that only
a finite number of operators are relevant. Indeed, for
the usual percolation fixed point, the rescaling of the op-
erators is found by choosing that the coefficient of the
spatial gradient term in Eq. (18) to be a constant. Since
the recursion relations for us and ro are completely in-
dependent of k, the geometric percolation fixed point is
the usual one. The scale factor for k, by contrast, may
be chosen at will. This influences the recursion relations
for the v, and hence the corresponding 1, exponents.
More specifically, the rescaling part of the renormaliza-
tion group transformation may be written as

By (q) — Plo—qx (@' = gb) = bT472m)/28, (q). (41)

As an example, we choose the scale factor a such that
the total resistance is kept constant under rescaling of all
lengths by a factor b. This is done by first noting that
after eliminating the degrees of freedom, the scaling of
v, is obtained by keeping the corresponding terms of the
action invariant

vyb? O (&), ()] (AK)MT g’

= v,k [ (9)]* (AK)MN d¥q. (42)

In the limit NM — 0, (Ak)NM does not come in since
the infinite-system limit (Ak = 0) is taken last. Setting
a = bY and b = €}, we obtain
dv,
de

Choosing

=[2—mp—g* (2+d,) + 2sy] vs. (43)

y=—32-7mp -9 (2+d)] (44)
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to keep the voltage across the network constant (i.e., vy
does not scale), the exponents associated with v, become

Yy = s — 25 (45)

so that the fields v, now appear irrelevant for s > 2.
In other words, since the 1, are a decreasing function
of s, we may always choose the scaling dimension of k
such that only a few of the 1, exponents are positive,
without influencing the physics. These statements can
be rephrased in a more physical way by recognizing that
the field theory of PHL corresponds to computing the
power dissipated between points z and z’ when a unit
current is injected between these points, whatever the
distance between z and z’: Omne could just as well de-
cide to rescale at unit voltage instead of unit current and
this would correspond to multiplying k by a scale factor
at each iteration. The size dependence of Aj does not
matter since, in the limit 061 — 0, Ap goes to infinity
independently of the system size. The rescaling in k is
associated with the scaling of applied voltage so that the
scalings in k and q space are independent of each other.

The remarks of the preceding paragraph may also be
formulated as follows: The analysis that we have done to
find the eigenpolynomials for Eq. (25) shows that the lat-
ter equation is like a second renormalization group with
fields v,, which describe the electrical properties of an
object whose (critical) geometrical properties are given
by the first renormalization group, with fields 7o and us.
The first renormalization group has properties totally in-
dependent of those of the second, while the second is
slaved to the first. The v, are conjugate to replica-space
gradients of the field operators ®. In other words, they
are conjugate to polynomials of degree 2s in k times ®3.
The rescaling of k in the second renormalization group is
arbitrary and this is fundamentally due to the linearity of
Kirchhoff’s laws. Instead of referring to relevant or irrele-
vant exponents, for that second renormalization group it
makes more sense to call them dominant exponents since
one expects that the observables that are connected to
1, are also coupled to other operators giving corrections
to scaling (subdominant exponents).

D. Observability

The ¢, of the XY model are not all relevant expo-
nents. In fact, for n > 4, they correspond to irrele-
vant operators [1,23-25]. While they are only a subset
of all possible irrelevant exponents, they are, however,
special because, for increasing values of n, they represent
the leading scaling behavior of operators with lower and
lower symmetry. It is their symmetry instead of their
relevance that seems fundamental for their observabil-
ity. The same remark applies for the dominant exponents
s /v = —x, discussed above.

VI. CONCLUSION

We have shown that the field theory for multifractals
in percolation has a special structure that allows multi-
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fractal exponents to have properties that do not usually
appear in standard critical phenomena. They follow from
symmetry-breaking operators in a second renormaliza-
tion group to which an additional normalization freedom
(e.g., scaling at constant voltage or constant current) is
associated. This freedom allows one to arbitrarily shift
the crossover exponents (while maintaining the observ-
able quantities unchanged). We propose to call these
exponents dominant since, even though their value can
be shifted, they are trivially related to the leading scaling
behavior of operators characterized by a given symmetry.
A second renormalization group also occurs in dynamical
systems [12] and probably also in the field of localization.
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d'r'k

o (A1)

= (2—mp)re — 9(2+ =),

where the self-energy is defined by

~ +oo +oo
So=tim [ [ dpas G+ RG R (A2)
with
(G =1+p—pet+ Y vk™PL) (-, 0k,..).

s>1
(A3)
Equation (A1) is a nonlinear recursion relation for the
v,. We now show how one can linearize this recursion

relation in the limit where n — 0 and o ! 5 0. Using
the Schwinger representation for the propagator

G (k) = /0 ™ du exp {~ulc )} (A4)

we get for Eq. (A2)
+o0 +o0 +o0 +oo
du/ dt/ / dz.g
0 0 —oo —oo

X exp {—u[G (x)] "t~ t[G (x + k)]*l} . (A5)

lim
n—0

By making the change of variables

In this appendix we derive the renormalization group X = X— [t n u] (A6)
equation (31). Let us recall that, to one-loop order, the
recursion relation for ry takes the form Eq. (A5) can be expressed as
J
-1 -1
T [Ta [T k| -t v Nk (A7)
1111_1)% A du/o dt/_oo /;oo dzopexps —uG [x— ra — x+ P .

For v, << v; we can expand to first order in v, all terms in G that are not invariant under rotation (the only term
that is invariant is k? and it is associated with the resistance). It is useful to define

P = szkz‘P,,(...,Hk, ).

8>2

Therefore, Eq. (A7) reads

+o0 +oo +oo
du / dt / S
n—0 Jq 0 — oo

—+oo
— lim

— 00

To interpret Eq. (A9) observe that in dimension n

Zg,
—oo —oo

+oo +oo
/ dwl.../ dwnexpi:— vi(u+t)(z2 + - +22)

dzrog exp [— (u+t)(1+p—pc) — v1x2 (u+1t) — vy

2p1

(A8)

o
wfp (ol () ) o

2p; _ Ll = (2p:)! 1
"TB; _(vl(u—’rt)) Il{%’-‘m! [2v1(u+t)

=



51 FIELD THEORY AND SECOND RENORMALIZATION GROUP... 4103

which givesas n — 0

i=j (2Pi)! pi
E{Zl’ip,—![2v1(u+t)] }

For analytic functions P, we can write with k/ = u%Hk

P(K —x)+Px+k)=2> >

>0 p1+---+p;=I
The integrals can then be evaluated as

+oo
lim d"x exp[—vy(u + t)x

n—0 [ o

) [P(x—k') + P(x+k)]

a2p1+"'+2ij

(A11)

921+ +2p; p

Oky2pr ... akfpf ’

2P1 e gp2Pi

S (A12)

1 1
=2;m > i

it +pi=l

p;! Ok;?p1 ..

- Ok

A ! u+t -2
=2exp[m} P(k') = 2exp 1o, —t A] P(k),

(A13)

where A is the Laplacian operator for the variable k. In this equation we have used the fact that for s > 2 the term

vy tt“ k? in (A9) cannot play any role to linear order in the v,. Now that we have interpreted Eq. (A9), we can
substitute it into Egs. (A7), (A5), and (A2) to obtain
: 2s
. . - - _ (1
a(}llnloil—lﬁ) Yk hm ;21)8 / du/ dtexplz u + t)( +r0)] [u+t} u
u+t, _o
X { exp T2 Al P, (k) ¢ - (A14)
4’01

Because the thermodynamic limit is taken last in replica approaches, we can show, as is done in the text, that

exp [““t‘z A] has a well-defined limit as 00-1 — 0.

The case s = 1 can now be treated simply. Indeed, in this case, it is only the term wv; tt” k2 that plays a role.

Expanding it, the term linear in v; in Ek is given by

hm vl/ du/ dtexp [— (u

tu
+0l —k*

This shows that k2 is an eigenpolynomial, as quoted in the text. Furthermore, the corresponding eigenvalue d; does

correspond to the s = 1 limit of Eq. (38).
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